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1. Solar radiance variability

The total solar irradiance (“solar constant”) varies in phase with the solar cycle by

≈ 0.07%, peak-to-peak.

New Composite CPMDF1 and CPMDF2 without and with a wavelet filter, respectively.

From www.pmodwrc.ch
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1. Solar radiance variability (cont.)

Facular region in the

continuum at 487.5 nm.

Field of view approximately

80′′ × 80′′.

From Hirzberger & Wiehr

(2005), A&A 438, 1059
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1. Solar radiance variability (cont.)

The cross-sectional area for excess radiative escape from faculae is much larger than

the magnetic field concentration proper.

model

From Steiner, O. 2005, A&A 430, 691–700

facular granule

From Lites, B. et al. 2004,

Sol. Phys. 221, 65

Effect first described by Caccin, B. & Severino, G. 1979, ApJ 232, 297–303
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1. Solar radiance variability (cont.)

- From a location at the solar surface and lateral to the flux sheet, a material parcel

“sees” a more transparent sky in the direction to the flux sheet compared to a

direction under equal zenith angle but away from it.

c =1τ

- Correspondingly, from a wide area surrounding the magnetic flux sheet or flux tube,

radiation escapes more easily in the direction of the flux sheet/tube.

- A single flux sheet/tube impacts the radiative escape in a cross-sectional area

(“radiative cross section” ) that is much wider than the magnetic field concentration

proper.

→ more on faculae
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2. The virial theorem

The virial theorem is widely known as

2U +Ω = 0 ,

where U is the total thermal energy and Ω is the gravitational binding energy

of the star. Thus, any change−∆Ω, e.g., by gravitational contraction of a star,

leads to a change in the thermal energy of the star of

∆U = −1

2
∆Ω =

1

2
|∆Ω| ,

leaving an energy excess of−∆Ω/2, which must be lost from the star,

normally in the form of radiation.

toc ref



2. The virial theorem (cont.)

A general form of the virial theorem, including the magnetic field, is given by:

1

2

d2J

dt2
= 2K +Ω +M + 3

∫
R
P dV + S ,

Chandrasekhar &

Fermi (1953)

J(t) =

∫
R
ρr2dV ,

K(t) =
1

2

∫
R
ρv2dV ,

Ω(t) =
1

2

∫
R
ρΨdV ,

M(t) =

∫
R

B2

2µ0
dV ,

3

∫
R
P dV = 3(γ − 1)U(t) ,

S(t) = −
∮
∂R
Ptot(r · n) dS +

1

µ0

∮
∂R
(r ·B)(B · n) dS .

where J is the moment of inertia, K the kinetic energy of mass motion, Ω the

gravitational binding energy of the star with Ψ being the gravitational potential, M the

magnetic energy, U the internal energy, and S a surface integral over the boundary

∂R of the regionR occupied by the star.
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3. Energy estimates

- The equivalent variation in thermal energy over a solar cycle due to the solar

luminosity variation is
∫
cycle

δLdt ≈ 0.5 · τcycle · 0.001 · L� so that

∆Urad ≈ 1032[J]

-

-
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3. Energy estimates

- The equivalent variation in thermal energy over a solar cycle due to the solar

luminosity variation is
∫
cycle

δLdt ≈ 0.5 · τcycle · 0.001 · L� so that

∆Urad ≈ 1032[J]

- One solar cycle generates a magnetic flux of Φ ≈ 1016 Wb. If this flux resides in the

overshoot layer in the form of flux sheet with a strength of 10 T, its total magnetic

energy can be computed:

A = 8 π

c

2
c

R

R

π 2
d

1

2
RcπdB = Φ ⇒ d =

2Φ

RπB
≈ 106[m]

Emag =
√
8πR2

cd
B2

2µ0
≈ 1032[J]

- “Coincidence” of equal magnetic and thermal energy change (Schüssler, 1996)
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Energy estimates (cont.)

The inertial virial: d2J/dt2 ≈ J/τ2cyc ≈
∫
R ρr

2dV/τ2cyc. ⇒
d2J/dt2 ≈ 10−3 ×∆Urad

The kinetic virial: The kinetic energy of convective motion in the convection

zone is Kcon = (1/2)
∫
R ρv

2
condV = 7.8× 1031 [J] = 0.16×∆Urad .

In the tachocline, where magnetic intensification presumably takes place, the

available convective kinetic energy reduces to Kcon ≈ 10−4 ×∆Urad.

Also, because Fconv ∝ v2conv <
!

10−3, convective motion cannot be tapped

in sufficient amounts. Since turbulent, convective motion is unlike to produce

coherent large scale magnetic flux ropes in the overshoot layer, we assume the

variation of Kcon with the solar cycle to be negligible, ∆Kcon = 0.
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Energy estimates (cont.)

The kinetic energy of rotation in the convection zone is

Krot = (1/2)
∫
R ρ(Ω(θ, r)× r)2dV = 5.5× 1034 [J] = 110×∆Urad .

However, the difference to the kinetic energy of rigid rotation under the

condition of equal rotational momentum, i.e., the available kinetic energy from

differential rotation is ∆Krot = 1× 1033 [J] = 2×∆Urad .

The available kinetic energy from differential rotation in the tachocline alone

amounts to ∆Krot = 1× 830 [J] = 0.015× Urad .

Thus, differential rotation in the magnetic layer would have to be very efficiently

replenished from layers atop for feeding the energy required for field

intensification. In lack of such a mechanism we have

K(t) = (1/2)
∫
R ρv

2dV = const
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Energy estimates (cont.)

The regionR encompasses the convection zone, where the lower boundary lies

beneath the overshoot region in the radiative zone with pg = const and B = 0. At

the upper boundary Pg = 0.

R1

R2

R

gp  = const

core

convection zone

S(t) = −
∮
∂R
Ptot(r · n) dS +

1

µ0

∮
∂R
(r ·B)(B · n) dS

= 4πR3
1pg(R1)︸ ︷︷ ︸

1.4×1040[J]

+4πR3
2f

B2(R2)

2µ0︸ ︷︷ ︸
1.5×1028[J]

+
1

µ0
4πR3

2fB
2
⊥(R2)︸ ︷︷ ︸

3×1028[J]
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Energy estimates (cont.)

Considering the variations over a solar cycle, only three virials of the full virial

equation remain significant:

δΩ + δM + 2δU = 0 .

Ωf −Ωi +Mf −Mi + 2(Uf − Ui) = 0 virial equation

Ωi +Mi + Ui = Ωf +Mf + Uf +R↗ energy equation

=⇒ R↗ = 1
2 (Ωi −Ωf ) +

1
2 (Mi −Mf )

case 1: Mf −Mi = ∆M > 0 and ∆U = 0 =⇒ R↗ = −1

2
|∆M |

case 2: Ωf −Ωi = −|∆M | ⇒ ∆U = 0 =⇒ R↗ = 0

case 2: ∆M = 0⇒ Uf − Ui = − 1
2 (Ωf −Ωi) =⇒ R↗ =

1

2
(Ωi −Ωf )
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Energy estimates (cont.)

Considering the variations over a solar cycle, only three virials of the full virial

equation remain significant:

δΩ + δM + 2δU = 0 .

Ωf −Ωi +Mf −Mi + 2(Uf − Ui) = 0 virial equation

Ωi +Mi + Ui = Ωf +Mf + Uf +R↗ energy equation

=⇒ R↗ = 1
2 (Ωi −Ωf ) +

1
2 (Mi −Mf )

case 1: Mf −Mi = ∆M > 0 and ∆U = 0 =⇒ R↗ = −1

2
|∆M |

case 2: Ωf −Ωi = −|∆M | ⇒ ∆U = 0 =⇒ R↗ = 0

case 2: ∆M = 0⇒ Uf − Ui = − 1
2 (Ωf −Ωi) =⇒ R↗ =

1

2
(Ωi −Ωf )
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Energy estimates (cont.)

Considering the variations over a solar cycle, only three virials of the full virial

equation remain significant:

δΩ + δM + 2δU = 0 .

Ωf −Ωi +Mf −Mi + 2(Uf − Ui) = 0 virial equation

Ωi +Mi + Ui = Ωf +Mf + Uf +R↗ energy equation

=⇒ R↗ = 1
2 (Ωi −Ωf ) +

1
2 (Mi −Mf )

case 1: Mi −Mf = ∆M > 0 and ∆Ω = 0 =⇒ R↗ =
1

2
|∆M |

case 2: Ωf −Ωi = −|∆M | ⇒ ∆U = 0 =⇒ R↗ = 0

case 3: ∆M = 0⇒ Uf − Ui = − 1
2 (Ωf −Ωi) =⇒ R↗ =

1

2
(Ωi −Ωf )
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4. Entropy flow in the solar convection zone

We have a downdraft of extra entropy deficient material beneath magnetically

active regions. Thus, the increase in emissivity from the solar surface is

communicated to the deep convection zone on a hydrodynamical time scale.

z
o

n
e

c
o

n
v
e

c
ti
o

n

extra entropy−deficient
downflow

extra
radiation

Spruit (2003) Sol. Phys. 213, 1-21 argues that this downdraft acts like a low pressure system on

the convection zone that drives a quasi geostrophic flow, which ultimately causes the observed

“torsional oscillation”.
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Entropy flow in the solar convection zone (cont.)

core

convection zone

Magnetic flux tube at the bottom of the

convection zone (dashed circle), rises

through the convection zone to the

surface (solid red circle), where it forms

a sunspot pair.

The flux tube must have an initial field

strength of 10 T in order to make it to

the surface.
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Entropy flow in the solar convection zone (cont.)

core

convection zone

Magnetic flux tube at the bottom of the

convection zone (dashed circle), rises

through the convection zone to the

surface (solid red circle), where it forms

a sunspot pair.

The flux tube must have an initial field

strength of 10 T in order to make it to

the surface.
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Entropy flow in the solar convection zone (cont.)

core

convection zone

Magnetic flux tube at the bottom of the

convection zone (dashed circle), rises

through the convection zone to the

surface (solid red circle), where it forms

a sunspot pair.

The flux tube must have an initial field

strength of 10 T in order to make it to

the surface.
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Entropy flow in the solar convection zone (cont.)

core

convection zone

Magnetic flux tube at the bottom of the

convection zone (dashed circle), rises

through the convection zone to the

surface (solid red circle), where it forms

a sunspot pair.

The flux tube must have an initial field

strength of 10 T in order to make it to

the surface.

- Schüssler, Caligari, Ferriz-Mas, Moreno Insertis et al.

- Fisher, Fan, Longcope, Linton et al.

- D’Silva, Choudhuri et al.
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Entropy flow in the solar convection zone (cont.)

convection zone

core

If the initial field strength is less than

10 T , the flux tube gets out of pressure

balance within the convection zone.

It “explodes” and an outflow ensues

that leads to a flux intensification in the

anchored part of the tube.
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Entropy flow in the solar convection zone (cont.)

convection zone

core

outflow

flux intensification

If the initial field strength is less than

10 T , the flux tube gets out of pressure

balance within the convection zone.

It “explodes” and an outflow ensues

that leads to a flux intensification in the

anchored part of the tube.

- Moreno-Insertis, Caligari, & Schüssler 1995, ApJ 452, 894

- Rempel & Schüssler 2001, ApJ 552, L171
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Entropy flow in the solar convection zone (cont.)

convection zone

core

outflow

flux intensification

If the initial field strength is less than

10 T , the flux tube gets out of pressure

balance within the convection zone.

It “explodes” and an outflow ensues

that leads to a flux intensification in the

anchored part of the tube.

- Moreno-Insertis, Caligari, & Schüssler 1995, ApJ 452, 894

- Rempel & Schüssler 2001, ApJ 552, L171

Note that the outflow injects entropy rich material to the convection zone.
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Entropy flow in the solar convection zone (cont.)

Hence, we have an extra entropy rich upflow at times of the magnetic field

intensification. This may possibly lead to a transient decrease in convective

energy transport, Fconv ∝ δ, because it reduces the superadiabaticity, δ.
c
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throttled
energy flux

extra
radiation

extra entropy−deficient
downflow

These processes work on a hydrodynamic time-scale and involve the entire

convection zone.

There is a thermodynamic cycle associated with the solar cycle.
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5. Conclusions

- The solar cyclic oscillation of the total solar radiance is immediately caused by

surface magnetism. However, there likely exists a global thermal component

associated with it comprising the entire convection zone.

- This relationship can possibly be understood/interpreted in terms of the virial

theorem.
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Conclusions (cont.)

- Observational consequences may be

- a variation of the superadiabaticity, δ in the convection zone dependent on the

strength of the solar cycle. In particular, a sequence of strong cycles my lead to

a reduction of δ over a longer time period;

- the correlation between stellar luminosity variation and the total magnetic

energy generated over a stellar cycle;

- a possible correlation of luminosity with solar radius;

- a readjustment of the convection zone at times of Maunder minima.
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Facular regions as seen in the ecliptic plane and perpendicular to it

ecliptic plane

view perpendicular toview in ecliptic plane

→ backto §1
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