

IR SO

Vortices and Alfvénic pulses in the simulated solar atmosphere

5th Swiss SCOSTEP Workshop, 16th of May, 2023

José R. Canivete Cuissa^{1,2}, Oskar Steiner^{1,3}

¹ Istituto Ricerche Solari Aldo e Cele Daccò (IRSOL), Faculty of Informatics, Università della Svizzera Italiana (USI), Via Patocchi 57 – Prato Pernice, 6605 Locarno-Monti, Switzerland

² Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science (ICS), University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland

³Leibniz-Institut für Sonnenphysik (KIS), Schöneckstrasse 6, 79104 Freiburg i.Br., Germany

In collaboration with: Andrea Battaglia, Flavio Calvo, Aleksi Bossart

e-mail: jose.canivete@irsol.usi.ch

Introduction

Source: Battaglia et al., 2021

- Small-scale **swirling motions** in the **quiet solar atmosphere** observations and simulations
- Footpoints in intergranular lanes
- Correlated with magnetic fields (Bright points)
 - "Magnetic Tornadoes"

Source: Wedemeyer-Böhm et al., 2013

• 3D r-MHD CO5BOLD simulations

Methods

• <u>3D r-MHD CO5BOLD simulations</u>

Vortex identification

>Swirling strength

- "Better version" of the vorticity
- Local quantity
- Evolution equation

> SWIRL Algorithm

- Automated identification of 2D swirls
- Based on local and global properties of the flow

$$-2\mathrm{Im}\left\{\mathcal{P}^{-1}\left[\nabla\left(\frac{1}{\rho}\nabla p_{\mathrm{g}}\right)\right]\mathcal{P}\right\}_{22} \qquad T_{\lambda}^{2}$$

$$-2\mathrm{Im}\left\{\mathcal{P}^{-1}\left[\nabla\left(\frac{1}{\rho}\nabla p_{\mathrm{m}}\right)-\left(\nabla\frac{1}{\rho}\right)(\boldsymbol{B}\cdot\nabla)\boldsymbol{B}\right]\mathcal{P}\right\}_{22}\quad T_{\lambda}^{3}$$

+ 2Im
$$\left\{ \mathcal{P}^{-1} \left[\frac{1}{\rho} \nabla ((\boldsymbol{B} \cdot \nabla) \boldsymbol{B}) \right] \mathcal{P} \right\}_{22}$$
 T_{λ}^{4}

$$-2\mathrm{Im}\left\{\mathcal{P}^{-1}\left[\nabla\left(\nabla\Phi\right)\right]\mathcal{P}\right\}_{22}.$$

$$T_{\lambda}^{5}$$

Source: Canivete Cuissa & Steiner, 2020

Methods

• <u>3D r-MHD CO5BOLD simulations</u>

Vortex identification

>Swirling strength

- "Better version" of the vorticity
- Local quantity
- Evolution equation

> SWIRL Algorithm

- Automated identification of 2D swirls
- Based on local and global properties of the flow

Torsional Alfvén waves

> Properties used for identification

- Phase of perturbations in *ν* and *B* (magnetic swirling strength λ^B)
- Propagate at Alfvén speed $v_{\rm A} = B_0/\sqrt{4\pi\rho}$
- Driven by magnetic tension

$$-2\mathrm{Im}\left\{\mathcal{P}^{-1}\left[\nabla\left(\frac{1}{\rho}\nabla p_{\mathrm{g}}\right)\right]\mathcal{P}\right\}_{22} \qquad T_{\lambda}^{2}$$

$$-2\mathrm{Im}\left\{\mathcal{P}^{-1}\left[\nabla\left(\frac{1}{\rho}\nabla p_{\mathrm{m}}\right)-\left(\nabla\frac{1}{\rho}\right)(\boldsymbol{B}\cdot\nabla)\boldsymbol{B}\right]\mathcal{P}\right\}_{22}\quad T_{\lambda}^{3}$$

+ 2Im
$$\left\{ \mathcal{P}^{-1} \left[\frac{1}{\rho} \nabla ((\boldsymbol{B} \cdot \nabla) \boldsymbol{B}) \right] \mathcal{P} \right\}_{22}$$
 T_{λ}^{4}

$$-2\mathrm{Im}\left\{\mathcal{P}^{-1}\left[\nabla\left(\nabla\Phi\right)\right]\mathcal{P}\right\}_{22}.$$
 T^{5}_{λ}

Source: Canivete Cuissa & Steiner, 2020

Swirl event

Time sequence of a swirl event at $z = 0 \text{ km} (B_z)$ and $z = 700 \text{ km} (v_z, \lambda_z, \lambda_z^B)$ in CO5BOLD simulations

Source: Battaglia et al., 2021

Swirl event - Propagation

Time-distance diagrams averaged over 150×150 km² of the vertical component of the swirling strength and of the magnetic swirling strength

Source: Battaglia et al., 2021

- Photospheric origin
- Upward propagation
- "**Pulse**" (not oscillatory)
- Swirling str. eq. analysis

Swirl event - Propagation

Time-distance diagrams averaged over 150×150 km² of the vertical component of the swirling strength and of the magnetic swirling strength

Source: Battaglia et al., 2021

• Photospheric origin

- Upward propagation
- "**Pulse**" (not oscillatory)
- Swirling str. eq. analysis

- Propagation at Alfvén speed
- Magnetic field twist opposite to vortex rotation
- Driven by magnetic tension

Swirl event - Propagation

Time-distance diagrams averaged over 150×150 km² of the vertical component of the swirling strength and of the magnetic swirling strength

Source: Battaglia et al., 2021

• Photospheric origin

- Upward propagation
- "Pulse" (not oscillatory)
- Swirling str. eq. analysis

- Propagation at Alfvén speed
- Magnetic field twist opposite to vortex rotation
- Driven by magnetic tension

Swirl event - Energetics

• Study vertical transport of energy with **Poynting flux** *S*_z

Horizontal section at z = 700 km of the vertical Poynting flux

Source: Battaglia et al., 2021

Swirling motions carry up energy

Swirl event - Energetics

Automated identification

- We seek a **robust** and **automated** vortex identification method based on the **velocity field only** to perform **statistical analysis** of swirls
 - > New method:

Estimated vortex centers (EVC)

Automated identification

- We seek a **robust** and **automated** vortex identification method based on the **velocity field only** to perform **statistical analysis** of swirls
 - > New method:

 B_{γ} [G]

Estimated vortex centers (EVC)

See: Canivete Cuissa & Steiner 2022, A&A 668, A118

 Open-source Python implementation:
 SWIRL algorithm https://github.com/jcanivete/swirl

 Given the velocity field, the SWIRL code
 correctly identifies most of the swirls in the simulated photosphere.

José R. Canivete Cuissa - SCOSTEP 2023 - 16th May 2023

Automated identification

Source: Canivete Cuissa & Steiner, 2023 (submitted)

Swirl statistics

 Statistics over 30 snapshots covering 2h of physical time

Vertical profiles of the average number density and radius of the swirls identified with the SWIRL code in CO5BOLD simulations

Source: Canivete Cuissa & Steiner, 2023 (submitted)

Swirl statistics

Vertical profiles of the average number density and radius of the swirls identified with the SWIRL code in CO5BOLD simulations

Source: Canivete Cuissa & Steiner, 2023 (submitted)

- Statistics over 30 snapshots covering 2h of physical time
 - Swirls are ubiquitous in the numerical simulations. Many more if compared with previous studies (e.g. Liu et al., 2019 : n_{2D} ~ 10⁻² Mm⁻²)
 - Four times more swirls in the chromosphere than in the photosphere
 - Smaller swirls on average. (e.g. Liu et al., 2019 : r ~ 200 km)
 - Resolution probably plays an important role in simulations (see Yadav et al. 2020)

Swirl statistics – Alfvénic swirls

• For an upward propagating torsional Alfvén wave

$$oldsymbol{v}=-rac{v_A}{B_0}oldsymbol{b}$$

Bivariate distribution of vortices according to swirling strength, magnetic swirling strength, and vertical magnetic field values

Source: Canivete Cuissa & Steiner, 2023 (submitted)

Swirl statistics – Alfvénic swirls

Bivariate distribution of vortices according to swirling strength, magnetic swirling strength, and vertical magnetic field values

Source: Canivete Cuissa & Steiner, 2023 (submitted)

José R. Canivete Cuissa - SCOSTEP 2023 - 16th May 2023

• For an upward propagating torsional Alfvén wave

$$oldsymbol{v}=-rac{v_A}{B_0}oldsymbol{b}$$

- Then v and B are in phase or 180° out of phase depending on the polarity of the magnetic guide B₀
- > Using R_z and λ_z^B as proxys, we obtain

$$\operatorname{sign}(R_z \lambda_z^{\mathrm{B}}) = -\operatorname{sign}(B_0)$$

Swirl statistics – Alfvénic swirls

Bivariate distribution of vortices according to swirling strength, magnetic swirling strength, and vertical magnetic field values

Source: Canivete Cuissa & Steiner, 2023 (submitted)

José R. Canivete Cuissa - SCOSTEP 2023 - 16th May 2023

 For an upward propagating torsional Alfvén wave

$$oldsymbol{v}=-rac{v_A}{B_0}oldsymbol{b}$$

- Then v and B are in phase or 180° out of phase depending on the polarity of the magnetic guide B₀
- > Using R_z and λ_z^B as proxys, we obtain

 $\operatorname{sign}(R_z \,\lambda_z^{\mathrm{B}}) = -\operatorname{sign}(B_0)$

- Most of the identified photospheric swirls (~80%) present perturbations in velocity and magnetic field which phase is compatible with Alfvénic waves
- Less correlation in the convection zone (turbulence) and in the chromosphere (shocks? reflected waves?)

Conclusions

- A detailed study of an atmospheric swirl revealed its Alfvénic nature
- > Phase between magnetic twist and plasma rotation
- > Upward propagation with local Alfvén speed
- Magnetic tension is the driving force

- Vertical positive **Poynting flux** associated with swirling motions
- Most contributions come from more complex magnetic regions
- Statistical analysis on CO5BOLD simulations with SWIRL code
- > Open source Python implementation (<u>https://github.com/jcanivete/swirl</u>)
- More and smaller swirls than previous studies
- > ~80% photospheric swirls are compatible with Alfvénic pulses (phase analysis only)
- Canivete Cuissa, J. R. & Steiner, O., 2020, A&A, 639, A118
- Battaglia, A. F. et al., 2021, A&A, 649, A121
- Canivete Cuissa, J. R. & Steiner, O., 2022, A&A, 668, A118
- Canivete Cuissa, J. R. & Steiner, O., 2023, A&A, submitted

José R. Canivete Cuissa - SCOSTEP 2023 - 16th May 2023

Contact : *jose.canivete@irsol.usi.ch*

